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Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term
solar energy generation. Existing techniques mainly fall into two categories: variational optical flow,
and block matching. In this paper, we summarize recent advances in estimating cloud motion using
ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a
hybrid tracking framework to incorporate the strength of both block matching and optical flow models.
To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate
the cloud movement and deformation, and thereafter comprehensively compare our hybrid approach
with several representative tracking algorithms over both simulated and real images collected from
various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models
by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of
simulated image sequences. Moreover, our hybrid model demonstrates its superior efficiency in several
real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images
and ground-truth images.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The variability and intermittency of generating solar power
generation have become one of the biggest obstacles in integrating
solar energy into the grid, while maintaining its stable operation
(Hanley et al.). To mitigate the volatility of solar power, various
solutions have been proposed, such as backup generators, battery
reserves, and power system scheduling and dispatches. However,
the effectiveness of these solutions largely depends on the accu-
racy of forecasting in advance the fluctuation of solar power. This
need gives rise to a series of research projects in modeling and
predicting solar irradiance. As clouds are the primary cause of
the intermittency of solar irradiance and the correlated output of
a PV system, predicting the variability of solar irradiance essen-
tially becomes an effort to estimate the movement and properties
of clouds, in other words, cloud tracking based on current informa-
tion, and then to create a solar irradiance model from the predicted
properties of the clouds (Hoff and Perez, 2012; Lave and Kleissl,
2013).

Over the past several decades, scientists have utilized remote
sensing technology, for example, geostationary satellite imaging,
to model and track clouds, and forecast solar irradiance (Escrig
et al., 2013; Stuhlmann et al., 1990; Peng et al., 2013). Given the
orbit of satellites, these approaches usually provide mid-term fore-
casts with a time horizon between half hour to six hours, and a
spatial resolution of several kilometers. On the other hand, an
ever-growing number of distributed roof-top solar panels and
smart storage solutions in smart-grids operate in a much shorter
time horizons and a smaller spatial resolution than that offered
by satellite imagery, and so engenders a pressing need for short-
term solar forecasts that predict minutes- or even seconds-ahead
solar availability and variability. A promising technique to satisfy
the requirement of tracking clouds and predicting solar activities
at such a high resolution is the usage of ground-based sky imaging
systems. In contrast to satellite imagery systems, the sky imager
can visualize local clouds from the ground level in real time, and
provide a high spatial resolution of sub-kilometers. Consequently,
its output images are widely used for estimating the localized
cloud fraction (Long et al., 2006; Pfister et al., 2003) and for

http://crossmark.crossref.org/dialog/?doi=10.1016/j.solener.2016.09.002&domain=pdf
http://dx.doi.org/10.1016/j.solener.2016.09.002
mailto:zhenzhou.peng@stonybrook.edu
mailto:dantong.yu@njit.edu
mailto:dantong.yu@njit.edu
mailto:dong.huang@nasa.gov
mailto:heiser@bnl.gov
mailto:kalb@bnl.gov
mailto:kalb@bnl.gov
http://dx.doi.org/10.1016/j.solener.2016.09.002
http://www.sciencedirect.com/science/journal/0038092X
http://www.elsevier.com/locate/solener


Z. Peng et al. / Solar Energy 138 (2016) 10–25 11
analyzing the clouds’ characteristics (e.g. opaqueness) (Shields
et al., 1993; Singh and Glennen, 2005). More recently, sky imagers,
coupled with various cross-domain techniques in the fields of com-
puter vision and machine learning, offer an effective approach to
extract the image-based features of clouds, identify their types,
estimate their base height, and determine the vertical cloud layers
via the clustering technology (Kazantzidis et al., 2012; Savoy et al.,
2015; Nguyen and Kleissl, 2014; Peng et al., 2014). Based on the
image features extracted and the results of cloud tracking,
ground-based imagers gain a remarkable momentum recently to
forecast solar irradiance within the range between half minute
and up to thirty minutes (West et al., 2014; Bernecker et al.,
2014; Yang et al., 2014), which precisely provides a complemen-
tary capability to those satellite-based approaches.

The solar forecast systems based on satellites and/or ground-
based sky imagers essentially try to predict solar occlusion effect.
The model usually involves identification of sun-occlusion pixels
associated with ground measurements and estimation of cloud
movement to predict the presence of clouds in near future (Chow
et al., 2011). Consequently, having an accurate estimation of the
cloud’s motion is essential to various prediction models that utilize
different imagers and target various forecast horizons (Chow et al.,
2011; Huang et al., 2012; Haupt and Kosovic, 2015; Xu et al., 2015;
Xu et al., 2015).

1.1. The limitations with current approaches

Among the techniques of tracking the motions of clouds, block
matching and optical flow (OF) are applied widely to various types
of imagery, including ground-based cameras and satellites.

Block matching technique takes a collection of pixels (i.e., a
block) as a tracking unit, has the ability to utilize regional informa-
tion, and thereby, is sufficiently robust to image noise and bright-
ness variations within images. If the underlying motions consist of
only translative velocity, and do not involve shearing and scaling, a
block-matching approach can faithfully represent the true move-
ments of clouds (Huang et al., 2011). However, the majority of
block-matching approaches employ pre-defined blocks with a
fixed size and position, i.e., a mesh or grid in an image (Hamill
and Nehrkorn, 1993; Chow et al., 2011). Consequently, this type
of block-matching approach is sensitive to the block’s segmenta-
tion and an incorrect segmentation in an image can compromise
its accuracy. Because non-rigid clouds have a variety of shapes
and positions that invalidate any pre-defined segmentation, the
performance of these block-based methods is inconsistent over
the streams of images from the camera. Even with the assignment
of dynamic blocks based on the cloud mask in a sky image (Peng
et al., 2014), the performance of the block matching algorithm still
deteriorates when multiple pieces of cloud reside within the same
block. Many recent methods adopt a hierarchical block structure to
track block-wise motions, and apply post-process filtering and
interpolating to the tracking outputs (Huang et al., 2011; Mori
and Chang). Nevertheless, with these approaches, only a limited
improvement is attained, and it still relies on predefined block seg-
mentation and the tedious tuning of block size and position.

On the other hand, optical flow (OF) addresses the motion
tracking problem at a lower level than does block-matching. It
enables to extract pixel-wise motion through variational methods
that first define an energy-like objective function, assume the con-
stancy of brightness cross images, and obtain the solution via min-
imizing the objective function. Compared to the block-matching
approach, the OF model is flexible and can accurately represent
complex 3-dimensional motions, such as rotation and scaling, at
the pixel level (Héas et al., 2007; Héas and Mémin, 2008). However,
it is sensitive to image noise and the variation in brightness, both
of which are quite common in sky images. Another issue is that
for texture-less regions or large-motion objects (e.g. fast-moving
clouds in sky imagery), the accuracy of OF may drop significantly
due to the lack of information (Brox and Malik, 2011). Even with
the smoothness term (Golemati et al., 2012) or a regional mask
(Wood-Bradley et al., 2012) that incorporate the surrounding infor-
mation, current OF approaches still neglect the important features,
such as the clouds’ distribution and the multiple cloud layers, each
of which has its own motion. Due to the multi-resolution image
processing requirement and iterative optimization scheme, it usu-
ally take minutes or even longer time for OF approaches to extract
motion field even from low-resolution images (Sun et al., 2014).
Consequently, latency becomes one of the biggest concerns to an
OF method and limits its application in short-term or real-time
cloud motion tracking with high-resolution images.

1.2. Contributions

To fully address the problem of tracking cloud motions, we
introduce existing state-of-the-art techniques of both block match-
ing and optical flow in Section 2, and detail seven classic models
that have already been applied to estimate cloud motions in sky
imagery in Section 3. With observed advantages and disadvantages
of prior approaches, in Section 4, we propose an innovative hybrid
method that combines both block matching and optical flow to
avoid their individual weaknesses and to mutually enhance each
other’s performance. In summary, we list our contributions in this
paper as follows:

1. Extracting dominant motion patterns. To incorporate information
of cloud layers into motion estimation, we attain the dominant
motion vectors from block-wise motions to eliminate outliers
and generate motion layers to constrain the optical flow (Sec-
tions 4.1 and 4.2).

2. Formulating a novel optical flow model. We devise a new OF
energy-like function to ensure that optical flow is consistent
with the regional trend of cloud motions and at the same time
allows small perturbations to track localized deformation in
clouds. Afterward, we apply an iterative approach to efficiently
minimize the complex objective, and also introduce customized
filters to further refine the resulting motions (Section 4.3).

3. Evaluating our model on simulated and real datasets. To validate
the effectiveness of the tracking methods, we design a compre-
hensive simulation framework to incorporate translative cloud
motions, shape deformation, and various levels of noises into
synthetic sky images; then we evaluate our model under these
circumstances with the known ground truth. Furthermore, we
apply our model to real images collected from various imaging
systems and vet its performance in real-world applications
(Section 5).

2. Related works

Manymotion-tracking techniques have been proposed to detect
the motion of objects in terms of the pixel-wise movement across
different images. However, only a few of them can be used to track
cloud motion because of its non-rigid shape and formation. In gen-
eral, the cloud motion vectors are important to numerical weather
prediction models, and usually are obtained from satellite images
(Leese et al., 1970; Cote and Tatnall, 1995; Evans, 2006; Corpetti
et al., 2008). With the advent of inexpensive digital cameras and
the emerging need for solar forecast with the fine granularity that
is beyond the spatio-temporal resolution of satellite images, recent
researches focused on using these ground-based cameras to track
the very short-term motions of clouds (Wood-Bradley et al.,
2012; Huang et al., 2013; Chow et al., 2011). These methods fall
into three main categories based on the scale and tracking criterion
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of the motions. In this paper, we discuss representative works in
each category in terms of their approaches and the adopted opti-
mization methods.
2.1. Optical flow motion tracking methods

In the field of computer vision, motion tracking is usually
resolved as estimating the Optical Flow (OF), i.e., the pixel-wise
distribution of prominent velocities of brightness/texture patterns
on an image. In general, an OF method can acquire dense motion
vectors at pixel level and have been proved effective in cloud
motion detection in satellite images (Corpetti et al., 2008). Follow-
ing original approaches presented in Horn and Schunck (HS) (Horn
and Schunck, 1981) as well as Lucas and Kanade (LK) (Lucas and
Kanade, 1981), there is a huge body of literature on optical flow.
We only focus on several representative models that can effec-
tively address the cloud tracking problem on sky imagery. The core
idea of optical flow is to obtain motion field while enforcing the
following gradient constraint equation under the assumption of
brightness constancy:

0 ¼ u � Ix þ v � Iy þ It ð1Þ

where I denotes pixel intensity values in gray scale. OIðx; tÞ ¼ ðIx; IyÞ
and It denote the spatial and temporal partial derivatives of I at time
t. w ¼ ðu;vÞ denotes the velocity magnitude of each pixel’s motion
vector in x and y direction respectively. The variational equation is
known as an ill-pose problem because it only allows to compute
optical flow that is normal to image edges. This type of optical flow
tracking is classified as local method since it optimizes energy-like
function for each pixel individually.

To incorporate the neighborhood pixels, Horn and Schunck
(1981) introduced the global strategy into the optical flow objec-
tive function, denoted as HS method. They formulated the optical
flow as an optimization problem assuming the global smoothness
of motions. The advantage of HS is that it enables the propagation
of information over large distances in the image. For texture-less
and uniform regions like clear sky or thin clouds on sky imagery,
HS extracts the motion information via neighborhood gradient
constraints.

Another type of optical flow methods is to constrain motions
and preserves local smoothness by satisfying the gradient con-
straint among neighboring pixels or in a pre-defined local region
(LK; Lucas and Kanade, 1981). For sky imagery, the LK method
can discriminate the dominant motion vector within cloud/sky
regions and is less sensitive to image noise. In particular, LK is
adopted by Wood-Bradley et al. (2012) to track clouds in images
captured by a laptop camera. Instead of using brightness intensity
or grayscale image, they converted the original to the scale of blue-
red difference to emphasize its prominent edges and corners. Sub-
sequently, Wood-bradley et al. extracted prominent features at the
points of interest with a large gradient of intensity for calculating
optical flow and then manually removed the noisy features to
refine the tracking result.

Many variants of the classic models of LK and HS were devel-
oped to improve the quality of optical flow. It is beyond the scope
of this paper to review the entire literature, and to search for
appropriate techniques for the purpose of cloud tracking. Hence,
we focus on several typical models that can effectively address
the problem of cloud tracking. Chow et al. (2015) utilized a well-
known global smoothing method in optical flow to detect the
clouds’ motions on the basis of a new sky imager system (USI
Urquhart et al., 2014). Moreover, they adopted the framework of
Black and Anandan (1996) and implemented a robust optical-
flow approach, termed BA (short for Black and Anandan). Com-
pared with their previous work on estimating the block-wise
motion (Chow et al., 2011), the BA method is claimed to have some
advantages: in particular, the error rate of the forecasted binary
cloudmaps by the BAmethod with its generated cloud motion vec-
tors is at least 19% less than that by the block-wise motion. Most
optical flow models, including BA, adopted a coarse-to-fine warp-
ing scheme for constructing a multi-scale image pyramid and iter-
atively looping through the layers of images for stable outputs of
optical flow. However in practice, the coarse-to-fine heuristic quite
often does not perform well, particularly for the large movement of
objects between two frames. The resulting optical flow fails to
faithfully represent the real motion (Brox and Malik, 2011). As
fast-moving clouds are common in our observations, we therefore
looked into the large-displacement optical flow (LDOF; Brox and
Malik, 2011) and compared it with other classic models.

2.2. Block-wise motion tracking methods

A block-matching method tries to search for the best-matching
blocks from two consecutive images that maximize the pre-
defined criterion of similarity. Typically, the criterion of similarity
in block-matching techniques is based on cross-correlation or
least-square errors, and helps us to find the disparity vector
between the same reference block across two images within a con-
strained window. Different from the OF methodology that assumes
constancy in brightness at the pixel level, block-matching tech-
niques assume that the reference block retains textural constancy
over time.

Block-matching methods long have been in existence for cloud
tracking in satellite imagery (Leese et al., 1970; Rutledge et al.,
1991; Evans, 2006). Most used cross-correlation to find the maxi-
mum correspondence of regions/blocks between two consecutive
image frames (Hamill and Nehrkorn, 1993). In 2011, Chow et al.
(2011) adopted cross-correlation as the matching criterion to
detect sparse cloud motion vectors (CMVs) in the images of TSI
440A, dividing the original TSI image into the blocks of identical
size. As a TSI generates an image from the reflection of dome-
shaped mirror, the regular blocks in a raw image are distorted
and not uniform in real-space. Therefore, the image distortion
compromises the accuracy of the detected motion vectors, espe-
cially around the boundary of an image. To resolve this issue,
Huang et al. (2011) and Huang et al. (2013) proposed preprocess-
ing TSI images and transforming the original distorted view to a
planar view. Thereafter, they located the best-matching blocks
based on the Normalized Cross-Correlation (NCC) value, and uti-
lized a refining threshold to remove the low accuracy matches,
i.e., the low NCC value. To mitigate the deformation in cloud and
predict the variation in block-wise motion, Huang et al. (2013)
investigated a multi-frame motion vector tracking and back-
tracking and extrapolated the future movement with the detected
motion trend. However, these approaches are not computationally
efficient and cannot take advantage of the cloud’s information. To
address these issues, we proposed a new method, termed ‘‘cloud-
block matching” (CBM), to dynamically determine cloud blocks
in sky images (Peng et al., 2015), estimate the motion vectors only
in the blocks of cloud pixels, and thereby assure its efficiency and
efficacy via an intelligent clustering.

2.3. Miscellaneous other approaches

In contrast to those two types of tracking, other tracking
approaches may use image registration techniques to attain dis-
parity vectors, viz., object motion, between two consecutive
frames. For example, phase correlation is a fast noise-resilient
approach that estimates the translative offset between two similar
frames or sub-frames in the frequency domain (Stone et al., 2001).
The phase-correlation method, as shown in the prior work (Huang



Z. Peng et al. / Solar Energy 138 (2016) 10–25 13
et al., 2011), cannot discriminate multiple movements within the
same sub-frame region. More importantly, compared with the
block-matching technique, the phase correlation technique incurs
a higher error rate and is less accurate when no obvious cloud tex-
ture is available in the designated regions.

To better address the dynamics of cloud motion, and track the
deformation over time, Bernecker et al. (2012) and Bernecker
et al. (2014) proposed using a non-rigid image registration. They
used the well-studied diffusion model that is developed by
Thirion (1998), based on the optical flow method to detect a com-
bined motion vector field with both global translative motions and
local variations obtained from the diffusion model. Many new
deformation models, such as the flow and curvature models
(Sotiras et al., 2013), follow the Demons’ method and are widely
used in the medical image registration.

In addition, the Particle Image Velocimetry (PIV) methodology
is used to estimate cloud motions as a velocity field. Chu et al.
(2013) and Marquez and Coimbra (2013) adopted the MPIV soft-
ware that was developed by Mori and Chang to detect the block-
wise cloud velocity field in TSI images. Here, MPIV partitions an
image into reference blocks and searches for the best matching
one based on the correspondence criterion of the Minimum Quad-
ratic Difference (MDQ) or the cross-correlation coefficient within a
nearby window. Afterward, MPIV applies the post-process steps of
filtering and interpolation to smooth out the output velocity vec-
tors. However, MPIV does not perform well when an image has
discontinuities, such as the artifacts of shadowband and the cam-
era’s supporting arm in the TSI. To improve the accuracy and aggre-
gate the sparse motion vectors of MPIV, Chu et al. (2013) proposed
using a k-means clustering to extract two majority motion clusters
to differentiate stationary clouds and/or clear sky from fast-moving
clouds.

In 2012, Huang et al. introduced a hybrid method that incorpo-
rates the stable local descriptor or local feature in estimating cloud
motions (Huang et al., 2012). On the top of the block-wise motion,
Huang et al. used the Partially Intensity Invariant Feature Descrip-
tor (PIIFD) (Chen et al., 2010) to adjust the motion vectors so to
enhance the robustness to geometric and photometric variations.
Similar to LK motion tracking, Huang’s method can determine
sparse motion vectors at those points with a large gradient of
intensity and correct erroneous block-wise motions.
3. Classic models

In this section, we discuss seven classic models that effectively
track cloud motions in sky images, detail their implementation,
and explore the appropriate parameter settings guided by state-
of-the-art works.

3.1. HS optical flow

The original HS formulation, proposed in Horn and Schunck
(1981), enforces two constraints: The intensity conservation, and
the global smoothness among optical flows, and minimize the fol-
lowing energy function:

Eðu; vÞ ¼
X
x;y

ðu � Ix þ v � Iy þ ItÞ2 þ kð Ouk k2 þ Ovk k2Þ ð2Þ

where u and v are the movement in the x and y direction respec-
tively at each position ðx; yÞ. Ou and Ov are the gradients of u and
v, and can be approximated by subtracting the value at the point
ðx; yÞ from a weighted average of the values at its neighboring pixels
(Horn and Schunck, 1981). The iterative algorithm of HS uses the
regularization weight, k, to control global smoothness. To achieve
optimal performance, we need to tune the smoothness parameter
k carefully for different applications. Even though the heuristic solu-
tion of HS long has been deemed inaccurate, it still achieves surpris-
ingly good results with a proper optimization and parameter tuning
(Geiger et al., 2012).
3.2. LK optical flow

The LK methodology (Lucas and Kanade, 1981) relies only on
the local information from a small window surrounding the point
of interest. Essentially, it is a local approach, and can faithfully
extract the motion vectors at the points that have prominent fea-
tures, such as corner points and edges (Wood-Bradley et al.,
2012). The energy-like objective function is defined as follows:

Eðu;vÞ ¼
X
x;y

gðx; yÞðu � Ix þ v � Iy þ ItÞ2 ð3Þ

where gðx; yÞ is the weight function to determine the region
wherein optical flow is constrained. The Gaussian function is a com-
mon example of gðx; yÞ (Fleet andWeiss, 2006). Eq. (3) assumes that
all pixels within the region share an identical movement. We used
the least-square estimator to resolve the optimization of the objec-
tive function. During our experiment, we used the Matlab imple-
mentation of LK that entails a coarse-to-fine framework (Bouguet,
2001). We adopted the same settings following (Wood-Bradley
et al., 2012), converted the original sky images to the scale of
blue-red difference, and then used a three-level image pyramid to
iteratively extract LK (iter# ¼ 3). gðx; yÞ serves as a mask function
and represents a region of 15 � 15 pixels. However, in contrast to
the original work in Wood-Bradley et al. (2012), our approach gen-
erates a dense flow field for all pixels, instead of only for those posi-
tions with prominent features.
3.3. BA optical flow

In 1996, Black and Anandan introduced non-convex robust pen-
alty functions into the objective of optical flow to replace the orig-
inal square-error term (Black and Anandan, 1996). Their method,
denoted as BA, has been widely applied for various purposes, such
as tracking objects and estimating motions in the field of computer
vision (Sun et al., 2014). In contrast to previous optical flow
approaches, BA formulates the energy terms with a series of
non-quadratic robust penalty functions Wðx2Þ for both the data
term, Ecolor , and the regularization term for smoothness, Esmooth:

Eðu;vÞ ¼ Ecolorðu;vÞ þ kEsmoothðu;vÞ
¼
X
x;y

WDððu � Ix þ v � Iy þ ItÞ2Þ þ k �WSð Ouk k2 þ Ovk k2Þ ð4Þ

where WD and WS respectively are the selected robust functions for
data and the smoothness penalty.WD and WS often are chosen to be
the same, e.g. the Lorentzian penalty Wðx2Þ ¼ logð1þ x2

2r2Þ in Sun
et al. (2010), or the quadratic penalty term Wðx2Þ ¼ x2 in the HS
method. Because Chow et al. (2015) already demonstrated a good
performance in tracking cloud motion by utilizing Eq. (4), we eval-
uate a well-known implementation of BAmethod developed by Sun
et al. (2014) and set k ¼ 0:1 based on the experiments in Chow et al.
(2015). We also choose the Lorentzian penalty with r ¼ 0:03 as the
robust function WD and WS. In contrast to the original work of BA,
this new implementation explores the most recent techniques,
including preprocessing, filtering, and interpolating methods. Con-
sequently, it significantly improves the accuracy of motion estima-
tion and eliminates noise in the flow field.
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3.4. Large Displacement Optical Flow (LDOF)

Existing optical flow methods often have difficulties in handling
small but fast-moving objects. To overcome this shortcoming, Brox
and Malik introduced a new model to track large displacements
(Brox and Malik, 2011). Their method, denoted as LDOF, formu-
lates the tracking problem with additional energy terms, and, more
importantly, incorporates one extra descriptor that regularizes the
objective. The idea is similar to the block-wise pipeline designed by
Huang et al. (2012) and Wood-Bradley’s LK model (Wood-Bradley
et al., 2012), each of which generates sparse motion vectors based
on local or prominent feature matching. Compared with the pixel-
to-pixel match used only in those aforementioned approaches,
descriptor matching relies on rich local descriptors, such as SIFT
and HOG, and is useful for tracking the motions of structures and
objects. Hence, this technique was applied successfully to estimate
arbitrarily large displacements between frames (Brox and Malik,
2011) or efficiently correct erroneous motion vectors (Huang
et al., 2012). The objective function of LDOF that is used to esti-
mate pixel-wise motions consists of the following five energy
terms:

Eðu; vÞ ¼ Ecolorðu; vÞ þ kEsmoothðu;vÞ þ cEgradðu; vÞ
þ bEmatchðu;v ;u1;v1Þ þ Edescðu1;v1Þ ð5Þ

Note that different from Ecolor term in Eq. (4), which adopts a lin-
earized form and thereby favors the estimation of motion field
with small displacements, Ecolor in Eq. (5) involves no linearization
so to retain the capability of tracking a large displacement of ðu; vÞ.
This is important in estimating cloud motions because fast cloud
movements that appear as large displacements between frames
are common in sky imagery. Ecolor between the first frame I1 and
next one, I2 is defined as follows:

Ecolorðu;vÞ ¼
X
x;y

Wð I2ðxþ u; yþ vÞ � I1ðx; yÞk k2Þ ð6Þ

Esmooth is identical to the second penalty term in Eq. (4) while
Egradðu;vÞ is the supplementary constraint that assumes the con-
stancy of intensity gradient at corresponding points on two frames:

Egradðu; vÞ ¼
X
x;y

Wð OI2ðxþ u; yþ vÞ � OI1ðx; yÞk k2Þ ð7Þ

The remaining two terms, Ematch and Edesc , are the energy terms
related to the sparse descriptor matching. c; k and b are the
parameters that need to be manually tuned based on the various
sky images. To improve the performance of motion tracking, Brox
and Malik investigated three different methods of descriptor
matching: SIFT, histograms of oriented gradients (HOG) and geo-
metric blur (GB). The results show that the HOG method generates
the smallest number of mismatches in various dataset. Following
their experiments, we applied LDOFwith HOG descriptor matching
and a Gaussian filter with r ¼ 0:8 for cloud tracking in sky images.
Moreover, we optimized the parameter setting of LDOF based on
the model’s performance on a training dataset of sky images. In
summary, the combined parameter setting consists of
k ¼ 30; b ¼ 300; c ¼ 5.

3.5. Hierarchical block matching (BM)

In 2011, Huang et al. (BM; Huang et al., 2011) proposed a two-
layer hierarchy of image blocks on grayscale TSI images to guaran-
tee an appropriate granularity for meaningful block matching, i.e.,
containing sufficient information for the matching calculation,
whilst capturing detailed cloud movements. Accordingly, Huang
et al. first preprocessed TSI images, divided them into blocks,
denoted as reference or inner blocks that, in general, are small
enough to contain only uniform movements. However, small
(inner) blocks usually do not have adequate variation in image
intensity, so that any block-matching for them may yield inaccu-
rate results. Thereby, instead of using reference block directly,
Huang et al. employed a bigger block (outer block) co-centered
with each inner block to search for the best match across images.
In addition, to refine the matching results and mitigate the influ-
ence of artifacts on TSI image, they undertook post-processing to
the matching results and applied two thresholds to discard the
blocks that have only all black/invalid pixels and/or low matching
score. In this paper, we adopted the BM method with the same
parameter settings outlined in Huang et al. (2011).

3.6. Cloud-block matching (CBM)

To incorporate actual cloud information into block matching,
we designed the CBM method outlined in our prior work Peng
et al. (2015) to dynamically determine and match actual cloud
blocks. We applied the Support Vector Machine (SVM Lindeberg,
1993) to generate a cloud classifier to separate cloud and sky pixels
on the basis of manually annotated images. It utilizes multiple
image features to categorize image pixels into two classes (cloud/
sky). Once the cloud mask is extracted from a TSI image, a con-
nected component detection algorithm (Haralock and Shapiro,
1991) is applied to the mask to generate the cloud regions that
are separated from sky pixels. We assumed that each individual
region is a piece of cloud with uniform motion inside, and drew
a minimum bonding rectangle for each region to represent the ini-
tial cloud block. Lastly, we applied a split-and-merge scheme to
divide large blocks or merge small ones, so to ensure that the out-
put of cloud blocks is suitable for the subsequent block-matching
computation. Similar to BM, the matching criterion of CBM is also
based the NCC score. In the actual implementation, we specified
the range of output block size between 10 � 10 to 80 � 80. The ini-
tial blocks that are outside the size range will be divided or
merged.

3.7. Particle Image Velocimetry in Matlab (MPIV)

MPIV is a Particle Image Velocimetry (PIV) software package to
analyze consecutive frames and obtain velocity vectors (Mori and
Chang). It generates motion vectors via a hierarchical search, and
more importantly, post-processes the generated motion vectors
with various de-noising techniques, such as a median filter, an iter-
ative search, and/or motion interpolations. As a result, MPIV is
widely adopted for detecting motions in various types of images,
in particular, tracking clouds successfully in the images from satel-
lites, or ground-based sky cameras (Marquez et al., 2013; Chu et al.,
2013; Marquez and Coimbra, 2013). In this paper, we used it to
generate velocity fields of clouds across various sky imagers, and
compare the results with other state-of-the-art models. Based on
the parameter settings in Marquez and Coimbra (2013) to obtain
cloud motions in the TSI images, we chose a 32 � 32 pixels pro-
cessing window and set the overlapping ratio of the search win-
dow as 0.5. In addition, we selected the Minimum Quadratic
Difference (MDQ) as the matching criterion and set the recursion
mode as two to iterate the entire process twice so to enhance
the accuracy of the motion vectors.
4. New hybrid model

To address the aforementioned issues of optical flow and block-
matching, we propose a new hybrid approach that integrates the
block-matching method and the variational OF model, and uses
the former method to guide/refine the latter one. This new model
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encompasses three main steps: (1) extracting cloud mask, generat-
ing cloud blocks via bottom-up merging and detecting block-wise
motions, (2) identifying dominant motion patterns from detected
motion vectors, and, (3) estimating optical flow using our new for-
mulation and refining based on multiple motion filters.

4.1. Block-wise motion detection

First of all, we need to identity all cloud pixels in images and
create a cloud mask for subsequent cloud block detection. Here
we implement a cloud pixel classification pipeline for CBM to gen-
erate cloud mask. This pipeline consists of a Support Vector
Machine (SVM) based binary classifier that is implemented with
the software package libsvm (Chang and Lin, 2011) and the param-
eters setting: S ¼ 0 (Classification), C ¼ 10 (the influence of slack
variables), t ¼ 0 (linear kernel). To comprehensively train the clas-
sifier for different imagers, we selected four images representing
four distinct cloud conditions, scattered clouds, cloudy, overcast,
and clear sky, for each sky imager, manually label all cloud pixels,
and extract six features for each cloud/sky pixel: R, G, B, red-blue-
ratio, Laplacian of Gaussian, and the standard deviation value
around the pixel’s neighborhood (5 � 5 in use). With the input
labels for the training images and selected features for each pixel,
our SVM classifier recognizes cloud pixels under various
cloud/lighting conditions with the accuracy of 96.6% (Peng et al.,
2015). Lastly, we apply the classifier to generate a cloud mask for
sky images where ‘‘1” stands for cloud pixels and ‘‘0” represents
non-cloud pixels.

To aggregate cloud pixels into reference blocks for motion esti-
mation, we use a well-known image decomposition method based
on quad-tree structure (Shusterman and Feder, 1994) to divide the
cloud mask into blocks, and subsequently estimate block-wise
motion vectors via maximizing the NCC score. Here, a quad-tree
is a hierarchical data structure in which each node has exactly four
children. It is often used to represent an image: each internal node
standing for a block of pixels. Starting from the root node that rep-
resents the entire image, a quad-tree is generated by recursively
decomposing nodes (image blocks) into four children nodes of
equal-sized non-overlapping square blocks, until the criterion of
homogeneity is met, or the minimum block size is reached. As a
result, the whole image is consequently represented with a top-
down tree structure. The quad-tree representation efficiently
divides a cloud mask into 2-D homogeneous cloud blocks that only
contain similar color, texture, or structure, and ease the subse-
quent block-wise motion tracking process.

4.2. Dominant cloud motion patterns

To suppress image noise and neglect falsely estimated motion
vectors, we propose to identify the dominant patterns of cloud
motions and use them to refine the entire motion field. First,
appropriate image preprocessing is necessary to undistort the TSI
images ensure that the majority of cloud motions obtained from
undistorted image are simple and translative. Subsequently, we
can apply a straightforward clustering (e.g. k-means) to effectively
group them, to find dominant patterns, and to remove abnormal
ones (Chen et al., 2013; Peng et al., 2015).

However, the clustering approach does not take into considera-
tion the weight of each motion vector, i.e., the size of actual cloud
block, and thereby, might miss some dominant vectors. In this
paper, we utilize the histogram statistics presented in He and
Sun (2012) to extract the N most frequent cloud motions in a sky
image, and use them to correct and refine the results of estimated
motions. To accurately determine the significant motion modes for
cloud pixels and exclude the small-scale motions caused by image
noise or sky pixels, we only consider those obvious motion vectors
that have adequate velocity between two consecutive frames. In
our experiments, we empirically use one as the threshold of vector

length to remove small-scale motion vectors ( uk k2 þ vk k2 6 1),
thereby, ignore stationary sky pixels or slow-moving clouds in cal-
culating dominant motions.

In our implementation, we first use motion vectors obtained
from block matching approaches to produce a dense motion field
where motion vector is resolved at the finest level, i.e., the pixel
level, and each cloud pixel acquires the associated motion vector
of the cloud block on which it resides. Thereafter, we create a
10� 10 2-Dhistogram for themotion vectors of all cloudpixels. This
design considers the size of a cloudblock, and a large blockhasmany
pixels, each of which contributes to the count, viz., the weight of the
shared block-wise motion vectors to the histogram. Then wewould
pick the N highest bins in this histogram that contain the N most-
frequent motion modes assuming that all motion vectors in the
same bin share the samemode, and grouped pixel-wisemotion vec-
tors into N clusters. As the number of cloud layers with differing
velocities is usually less than four, in practice we used N ¼ 4
throughout the paper for cloud motion tracking. For each motion
cluster, we selected the median motion vector as the dominant
motion pattern, and thereby, generated a collection of dominant
motion vectors (X ¼ ðui;v iÞj i ¼ 1;2; . . . ;Nf g). Finally, we refine all
non-zero motion vectors by resetting their values to the closest

dominant motion vectors: ð~u; ~vÞ ¼ argmin
ðui ;v iÞ

ð u� uik k2 þ v � v ik k2Þ

where ðui;v iÞ 2 X. Here, we use ð~u; ~vÞ as the reference vector to
guide the refinement of optical flow in the next section.
4.3. Context-aware variational model and its refinement

The original OF models lack of the contextual information and
are agnostic to the existing domain knowledge, and consequently,
they often assign erroneous flow vectors to cloud pixels and are
sensitive to noises in images. To cope with those issues and utilize
the information of motion layers and cloud distribution, we pro-
posed a new OF model. First, we revise the energy-like objective
to assimilate the aforementioned dominant motion patterns, and
to use them to create a context for calculating the optical flow at
each cloud pixel. However, a motion field obtained only from the
straightforward process of energy minimization still suffers those
issues. The general practice in many prior works is to apply post-
processing techniques, such as median filtering (Wedel et al.,
2009) or signal-noise-ratio threshold (Mori and Chang) to mitigate
the impact of image noise and remove the outliers. Therefore, we
also follow the practice and apply three filters thereafter to further
assimilate cloud information, utilize dominant motion patterns,
and remove noise in the motion field. Given the facts that one iter-
ation is not sufficient to correct the motion-field and the reference
vector still needs to be refined to absorb new information and
thereby to closely represent the current motion field, we design
an iterative algorithm to generate and optimize the dense flow
field and to update the subsequent reference motion vectors. This
design recognizes that the vectors detected by the BM and the OF
models are actually inter-dependent. For the optimal results, they
should be integrated into the same framework to ensure them to
mutually enhance each other.

Inspired by the two-stage (assimilation and updating) alterna-
tive minimization framework in Sun et al. (2014), we propose a
new OF model based on a four-step optimization pipeline that iter-
atively generates a dense flow field, as shown in Fig. 1. In this four-
step framework, we iteratively solved and refined the OF result via
introducing the auxiliary motion field ðû; v̂Þ to: (1) estimate the
flow field ðu;vÞ so that it is nearly identical to ðû; v̂Þ, and (2) calcu-



Fig. 1. Minimization of new variational model.

16 Z. Peng et al. / Solar Energy 138 (2016) 10–25
late the best ðû; v̂Þ using three motion filters on the current track-
ing result ðu;vÞ.

The first step of the pipeline in Fig. 1 is to formulate the OF
objective Eðu;vÞ to be a summation of four energy terms as
follows:

Eðu; vÞ ¼ Ecolorðu; vÞ þ kEsmoothðu;vÞ þ cEgradðu; vÞ
þ bEmotionðu;v ; û; v̂Þ ð8Þ

where Ecolor and Egrad are defined in Eqs. (6) and (7). Esmooth is identi-
cal to the second term in BA (Eq. (4)). Here, we add a new energy
term Emotion so to encourage the optical flow to be identical to the
reference/auxiliary motion field ðû; v̂Þ, whilst allowing a small per-
turbation from it, and meanwhile penalizing any large deviation.
Emotion is defined as follows:

Emotionðu;v ; û; v̂Þ ¼
X
x;y

qð u� ûk k2 þ v � v̂k k2Þ ð9Þ

The motion perturbation presented in Chen et al. (2013) can
track non-rigid transformation and deformation on the local scale.
By setting the initial reference motions to be the dominant motion
patterns, i.e., ðû0; v̂0Þ ¼ ð~u; ~vÞ, for each pixel, we constrain clouds to
move along the major trend (wind direction) while permitting a
small deviation to capture the local deformation and the changing
shape of the clouds.

Optimizing Eq. (8), however, is a non-trivial task since the orig-
inal problem is not linear. Its minimization requires a two-step lin-
earization based upon the corresponding Euler-Lagrange
equations, and successive over-relaxation (SOR) (Brox et al.,
2004). The details of discretization and implementation are given
in Brox and Malik (2011) and Brox (2005).

However, the motion field obtained by minimizing the energy-
like objective still contains anomalies that do not match the real
cloud movements. The general practice in many previous efforts
was to apply post-processing techniques, e.g. median filters. In
the pipeline in Fig. 1, we use three different filters (sky filter, dom-
inant motion filter, and weighted median filter) thereafter for
assimilating cloud information, utilizing dominant motion pat-
terns, and de-noising the motion field.

Sky filter processes the clear sky pixels that are identified by
velocity threshold. We assume that the clear sky regions in images
do not move between consecutive frames, and set the motions of
all sky pixels that acquire a small-scale motion (i.e.
u2 þ v2 6 T2

sky) in the previous step to be zero in both the x and y
directions. It eliminates the small motion vectors caused by image
noise and avoids accumulating errors in the iterative minimization
step. It is noteworthy that instead of considering all clear sky pix-
els, we filter out only the ones with a small movement based on the
threshold criterion Tsky because cloud pixels in thin clouds or the
images containing a high level of image noise have a high probabil-
ity of being falsely categorized into the class of clear sky. Conse-
quently, relying on cloud mask only potentially neglects these
special cases, and accidentally removes the prominent motions of
these mis-classified pixels.

A dominant motion filter is designed to identify the outliers with
reference to the dominant motion patterns. If a motion vector at
position ðx; yÞ has significant deviations from all dominant motion
patterns (X), then we identify it as an outlier, i.e., if a motion vector
meets the following condition, we will remove it.

ðux;y;vx;yÞjðux;y � uiÞ2 þ ðvx;y � v iÞ2 > �2;8ðui; v iÞ 2 X
n o

ð10Þ

This filter significantly helps to refine the motion field for the
next round of minimization and to update the reference motion
field.

A weighted median filter is widely adopted to smooth and
de-noise the motion field in the post-processing step (Sun et al.,
2014). Our model employs this filter to update reference (auxiliary)
motion field ðû; v̂Þ. The weighted median filter can be calculated as
follows:

min
ûx;y ;v̂x;y

Z
ðx0 ;y0Þ2Cðx;yÞ

wx0 ;y0
x;y ð ûx;y � ux0 ;y0

�� ��þ v̂x;y � vx0 ;y0
�� ��Þ ð11Þ

where Cðx; yÞ is the set of ðx; yÞ’s neighborhood pixels ðx0; y0Þ within

a pre-defined window (e.g. 5 � 5) centered at ðx; yÞ. wx0 ;y0
x;y stands for

the weight of the affinity (similarity) between two pixels. In our
implementation, we approximate its calculation with the color dif-
ference in an image:

wx0 ;y0
x;y ¼ e�

Fðx;yÞ�Fðx0 ;y0 Þk k2
2r2 ð12Þ

where F represents the color image with the R, G, B channels. To
compute w efficiently between each pair of pixels, we adopt the
joint-histogram weighted median filter (JointWMF Zhang et al.,
2014) to reduce the execution time of updating ðû; v̂Þ. Compared
with the weighted median calculation in Sun et al. (2014), the
JointWMF significantly speeds up the running time by more than
10 times and at the same time preserves the quality of estimation
(Zhang et al., 2014). Afterward, we pass the updated ðû; v̂Þ for the
next round of the iterative minimization of Eðu; vÞ. Based on our
empirical experience on sky imagery, our best practice is to iterate
the whole process three times to balance between the computa-
tional cost and the accuracy of optical flow estimation.

5. Experiments

To validate the effectiveness of our proposed model, we propose
establishing a comprehensive simulation framework to incorpo-
rate translative cloud motions, cloud deformation, and various
levels of noises into the synthetic sky images. Then, we can evalu-
ate our model under these circumstances with the known ground
truth. Furthermore, we will apply our model to real images col-
lected from various imaging systems and validate its performance
in real-world applications.

5.1. Simulated dataset of cloud images

To evaluate the robustness of tracking models, we generated
three different two-frame sequences of synthetic images from a
cloud template (foreground) and a real sky image (background),
each of which represents image noises or a different type of cloud
motion, i.e., deformation or scaling, as shown in Fig. 2. We first



Fig. 2. Framework of synthesizing two-frame sequence of sky images.
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overlaid the template on the background image to create the first
synthesized frame. Then, we employed different transformation
models or injected image noise to generate a new template, and
subsequently applied a translative motion vector to synthesize
the second frame. Consequently, the ground-truth motion field is
a combination of the template translation and the motion pertur-
bations originating from the deformation or scaling models. We
detail the three types of simulations as follows:

(1) Simulation with a deformation model. Inspired by prior work
(Thirion, 1998) that simulated the changes in the Magnetic
Resonance Image of brain (MRI) by a 2-D synthetic deforma-
tion model applied on a template, we utilized the same
model of image distortion to resemble the changes in shape
and deformation of clouds during their movements between
two consecutive frames; we also adopted their spatial sinu-
soidal functions with the same settings to the deformation
parameters of amplitude (A) and spatial period (S).

(2) Simulation with scaling. We utilized an image resizing tool to
simulate the cloud’s shrinking and expansion. The size of the
new template is the scale ratio (SR) multiplied by its original
size. In our experiment, we set SR in the range between (0.9–
1.2) with a step size equal to 0.1.

(3) Simulation with different levels of noises. Following the idea
proposed in Golemati et al. (2012) that added the Gaussian
noise to the images of carotid arteries, we also injected the
same type of random noise into the R,G,B channels of our
synthetic image sequences. In this simulated dataset, the
signal-to-noise ratio (SNR) ranged between 20 and 50.

5.2. Real sky imagery datasets

In this paper, we use seven types of sky images that were col-
lected from different locations, and/or different types of sky cam-
eras (see Table 1 for details). The column Rate stands for the time
interval of two consecutive frames of certain image source. The
first three datasets, denoted as BNL1, BNL2, and BNL3, were
obtained from a small network of three TSIs deployed in the Long
Island Solar Farm (LISF) at Brookhaven National Laboratory. These
TSIs have an identical configuration, and are placed close to each
other so to acquire the overlapping views for the purpose of track-
ing the micro-scale cloud motions. To cover the representative
conditions of various types of weather and clouds, we chose 562
timestamps from May/07/2013 to June/25/2013 that are synchro-
nized among all three TSI datasets. We converted the raw TSI
images (480 � 640) into their planar views to eliminate distortion
in the images and cropped the resulting planar images with a res-
olution of 500 � 500 pixels, and a pre-defined Field of View (FOV)
of about 120� to remove low-quality regions. Lastly, we masked
out the irrelevant pixels in the areas with artifacts, such as the
camera supporting arm, the shadow band, the out-of-FOV areas,
and ground obstacles, as illustrated in Fig. 3a and d.

The fourth and fifth dataset are from the TSIs in different loca-
tions: SGPC1 represents the dataset that consists of a pair of two
image frames collected daily every 30 min between 10:00 AM
and 16:00 PM (local time) from April/15 to June/01/2012 from
the central facility of the Southern Great Plains; TWPC1 is collected
from the Tropical Western Pacific site in Manus Island. Similar to
SGPC1, TWPC1 comprises the pairs of consecutive frames every
30 min daily from August/25 to November/01/2010. We also pre-
processed the raw TSI images of these two datasets with the same
method to correct distortions, and the same mask with a FOV of
120�. These two datasets ensured that our proposed model of esti-
mating cloud motions has sufficient coverage for various cloud-
and weather-conditions in different geographical locations.

The remaining two datasets were obtained from the high-
definition cameras deployed at Brookhaven National Laboratory.
The first dataset, HD-TSI, is from a high definition TSI in which
we replaced the built-in camera by a security camera with a
high-resolution of 2592 � 1920 pixels, (Fig. 3b). After preprocess-
ing, we generated a planar view of 1000� 1000, with a FOV of
about 140� (Fig. 3e). The other HD-image dataset, HD-SI, was
obtained from a security camera that faced upward to take pictures
of local sky regions directly via its fish eye lens (Fig. 3c). After pre-
processing, we also retained the images with a resolution of
1000 � 1000 and the same FOV of about 140� (Fig. 3f). These two
datasets helped us to validate whether our model is scalable to dif-
ferent types of cameras and large images.

5.3. Quality control in real sky imagery datasets

In addition to the preprocessing step, we introduce threshold-
based filters to eliminate three types of low-quality images to
ensure the veracity of motion tracking. Firstly, images with either



Table 1
Overview of seven sky image datasets.

Dataset Instrument Range image# Rate (s) Resraw Res FOV (�)

BNL1 TSI 880 2013-05-07–2013-06-25 562 10 480 � 640 500 � 500 120
BNL2 TSI 880 2013-05-07–2013-06-25 562 10 480 � 640 500 � 500 120
BNL3 TSI 880 2013-05-07–2013-06-25 562 10 480 � 640 500 � 500 120
SGPC1 TSI 440A 2012-04-01–2012-06-15 1680 30 480 � 640 500 � 500 120
TWPC1 TSI 440A 2010-08-25–2010-11-01 1654 30 480 � 640 500 � 500 120
HD-SI IP-cam 2014-10-01–2014-11-01 434 10 1920 � 1920 1000 � 1000 140
HD-TSI IP-cam 2014-09-01–2014-10-01 434 10 2592 � 1920 1000 � 1000 140

Fig. 3. Raw image and preprocessed view of TSI, HD-TSI, and HD-SI.

Fig. 4. Color coding scheme for the motion vectors in the range between (�15,�15)
to (15,15).
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low solar angles (early in the morning or late in evening) or abnor-
mal color representations, appear to have excessive brightness or
darkness, and tend to bear insufficient texture in cloud regions
so to generate erroneous motion estimations. For dark images,
we filter them out based on their solar angle that is coupled with
their capture time. For images with excessive brightness, we apply
threshold to select and discard. Furthermore, because we already
have three sky imagers with overlapping field of view (FOV), i.e.
BNL1, BNL2, and BNL3, we take advantage of the shared FOV and
utilize an RGB histogram equalization approach presented in
Peng et al. (2015) to correct abnormal color representation in
images with defects. Secondly, images that contain only clear sky
do not help provide meaningful motion vectors, we filter out
clear-sky images based on a cloud fraction threshold (<10%).
Thirdly, we discard images with overcast clouds. This type of
images usually has texture-less cloud regions, and its cloud
movements between consecutive frames are often ambiguous
and error-prone for motion estimation because motion tracking
models rely on structural difference and horizontal Heterogeneity
to best estimate cloud displacement and changes. Therefore, we
filter out extremely cloudy or overcast cases based on the cloud
fraction threshold tcf P 90%.

5.4. Evaluation metrics

We adopted five metrics to quantitatively evaluate the perfor-
mance of our proposed model of estimating cloud motions and
to compare it with several representative models. Here, we denote
the estimated motion as Wðx;yÞ ¼ ðu;vÞ and the ground-truth
motion asWG

x;y ¼ ðug ;vgÞ. Because a dense motion field is our focus,
we will evaluate the average performance of motion tracking on all
P pixels where P is the total number of pixels in images.
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(1) Optical-flow color map. We propose using a color map to
visualize a dense motion field, a common approach adopted
by computer vision. With it, pixel-level motion vectors are
normalized and represented by different colors based on
their magnitude and orientation. In this paper we normalize
all motion vectors to be within a square ranging between
(�15,�15) to (15,15), and thereafter assign each pixel a
color code from the motion color map in Fig. 4.

(2) Average angular error (AAE). The AAE measures the errors
that arise from the angular deviation of an estimated motion
vector from the corresponding ground-truth orientation, and
is calculated via the following equation:
Fig. 5
AAE ¼ 1
P

X
ðx;yÞ

arccos
Wðx;yÞ � WG

ðx;yÞ
kWðx;yÞkkWG

ðx;yÞk

 !
ð13Þ
. The color map of the results of all tracking models on three types of synthetic
(3) Standard deviation of angular error (STDANG). STDANG
denotes the standard deviation of the angular errors and is
defined as follows:
images
STDANG¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

X
ðx;yÞ

arccos
W ðx;yÞ �WG

ðx;yÞ
kWðx;yÞkkWG

ðx;yÞk

 !
�AAE

 !2
vuut ð14Þ
(4) Average end-point error (AEPE). This evaluates the average
deviation of motion vectors from the ground-truth vector.
AEPE ¼ 1
P

X
ðx;yÞ

kðWðx;yÞ �WG
ðx;yÞÞk ð15Þ
(5) Mean absolute error (MAE). In our experiment, we use I to
represent the whole image and its grayscale pixel values in
the range of [0–255]. Then the MAE is used to calculate
. Left to right: Ground-truth motion, BM, CBM, MPIV, LDOF, and Hybrid.



Table 2
The AAE, STDANG, and MEPE scores of the motion-tracking models on simulated images with various deformation settings.

A = 1, S = 16 A = 3, S = 32 A = 5, S = 32

AAE STDANG MEPE AAE STDANG MEPE AAE STDANG MEPE

BM 1.771 11.61 0.162 1.692 11.16 0.175 1.705 10.99 0.186
MPIV 0.956 7.710 0.057 0.985 7.829 0.071 1.262 8.934 0.101
CBM 0.368 4.967 0.038 0.501 5.499 0.063 0.660 6.583 0.088
HS 1.573 8.048 0.075 1.551 7.947 0.076 1.572 8.380 0.089
LK 5.277 16.91 0.267 5.456 17.28 0.299 5.761 18.08 0.360

LDOF 0.628 6.671 0.043 0.516 5.393 0.041 0.547 5.401 0.061
BA 0.488 5.587 0.038 0.584 5.500 0.054 0.802 7.061 0.074

Hybrid 0.218 3.852 0.021 0.324 4.435 0.035 0.494 5.655 0.058

Table 3
AAE, STDANG, and MEPE scores of motion tracking models on simulated images with three levels of Gaussian noise.

SNR = 20 SNR = 30 SNR = 40

AAE STDANG MEPE AAE STDANG MEPE AAE STDANG MEPE

BM 1.813 12.03 0.216 2.355 13.77 0.278 3.271 15.05 0.279
MPIV 0.707 6.582 0.044 0.772 6.427 0.043 1.771 8.710 0.073
CBM 4.097 17.75 0.339 5.003 20.22 1.891 1.034 8.968 0.185
HS 0.637 6.104 0.055 0.715 6.617 0.056 0.799 6.977 0.058
LK 31.17 34.14 1.303 23.95 32.74 1.048 15.51 28.56 0.662

LDOF 33.14 38.04 2.374 2.032 11.95 0.120 1.052 9.026 0.080
BA 16.67 29.28 0.707 6.050 19.33 0.254 1.331 10.09 0.092

Hybrid 0.233 4.225 0.027 0.231 4.224 0.024 0.231 4.241 0.023
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the mean absolution error between the ground-truth image
(Ig), and the predicted one. Here, the predicted image (IPredict)
is subsequent to the current image frame in the same
sequence and is generated by applying the estimated motion
vectors to all pixels thereby mapping those from the current
image frame to the next frame. We generally use the MAE
score to evaluate the performance of motion estimation
(Huang et al., 2012) when the ground-truth for motions does
not exist.
MAE ¼ 1
P

X
ðx;yÞ

IPredictðx; yÞ � Igðx; yÞ
�� �� ð16Þ
5.5. Experiments on simulated image frames

We applied seven classic models and our proposed hybrid
model to estimate cloud motions in the three types of simulated
image-sequences. Fig. 5 shows the output motion fields in the for-
mat of color map that correspond to the ground-truth, BA, CBM,
MPIV, LDOF, and Hybrid respectively. The first row of images in
Fig. 5 indicates the detected motions of all pixels in the entire sim-
ulated image whilst the second row is the zoom-in view of the
motions of the cloud region (bordered in red). From Fig. 5a and
b, we observed that our hybrid model can accurately detect the
deformations of clouds and generate the best motion color map,
in particular, in the areas around the edges, to closely resemble
the ground-truth, when compared with other models. As shown
in these two figures, even though CBM can estimate the major
trend of motions based on its intelligent detection of big blocks
of clouds, nevertheless it neglects the underlying deformations in
shape within each block, and fails to capture the local variations
in the area of clouds. Consequently, its color map appears to be
in a solid color with the obvious artifacts arising from the decom-
position of a cloud block.

Fig. 5c shows the third case of noises in images. Here, each
image is corrupted with the Gaussian noise at a level of
SNR ¼ 20. We observed that because of the existence of these
noises, most models fail to recover shape of the cloud and produce
falsely estimated motions for those stationary pixels. With the help
of the filters and the dominant patterns of motion, our proposed
hybrid model preserves a reasonable segmentation between the
motion fields of a cloud region and the area of clear sky, whilst
incurring only a much smaller number of outliers in the area of
clear sky than do the remaining models.

Tables 2 and 3 show the performance number of all the models
with regard to two different deformation settings and multiple
levels of noise. We conclude that the Hybrid model consistently
outperforms other models in most cases in terms of three different
metrics, i.e., AAE, STDANG, and MEPE. For the most difficult case of
simulating deformation (i.e. A ¼ 5; S ¼ 32), Hybrid retains the
lowest level of errors in terms of AAE and MEPE and the second
to the lowest in terms of STDANG, which is only 5% higher than
the best score obtained by the LDOF model.
5.6. Experiments on TSI and High Definition (HD) images

To validate the accuracy of detected motion vectors, we applied
the resulting motion field between two consecutive frames (t � 1
and t) to predict the next frame (t + 1) and to compare it with
the true image. In Fig. 6, the first row lists the raw data of three
frames at time t � 1; t; t þ 1 (ground-truth) and a motion mask
to remove outliers and calculate the MAE score. The second row
presents the motion fields of BM, MPIV, BA, and Hybrid respec-
tively. The third row shows the predicted images using detected
motions and image interpolation. The fourth row displays the color
maps of the difference between the predicted images by the four
models and the ground-truth frame at time t þ 1. We observed that
our Hybrid model can generate stable motion vectors near the
boundary of each piece of cloud. In contrast to other models,
Hybrid is able to capture the small changes of clouds and produce
less MAE errors in texture-rich regions.

In our experiment, we selected eight representative cases to
encompass various cloud conditions that appeared in different
sites and sky imagers. The first six of them shown in Fig. 7 are in
TSI datasets: Fig. 7a shows the condition of scattered clouds whose
boundaries are clearly segmented. All pieces of cloud have negligi-



Fig. 6. Using the estimated motion fields to predict the next image frame at time t þ 1.

Fig. 7. Six cases selected from the TSI datasets. (a) Scattered clouds; (b) images from BNL1 dominated by a green color; (c) fast-moving clouds in dataset BNL3; (d) multi-layer
clouds; (e) and (f) images from two different TSI sites (SGPC1 and TWPC1), both showing fast motion of clouds and deformation in their shape. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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ble deformations and identical motion vectors. Fig. 7b shows an
abnormal image with a different color scale by an artifact of the
camera’s setting and dominated by green. Fig. 7c contains fast-
moving clouds with a velocity of approximate ðu;vÞ ¼ ð�17;2Þ.
Fig. 7d comprises two layers of clouds, each with different motion
vectors: the first one has ðu;vÞ ¼ ð6;1Þ whereas the other has
ðu;vÞ ¼ ð11;�6Þ. This example targets at evaluating each model’s
capability to determine the multiple layers of cloud motion.
Fig. 7e and f, respectively, come from the dataset of SGPC1 and
TWPC1. The clouds in these two examples move quickly between
the frames, and more importantly, involve local deformations, such
as cloud dissipation and changing shape. The average translative
movement in the first example is close to ð�25;�19Þ, and the
average motion during half a minute in the second one is about
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ð�39;10Þ. The remaining two cases are from the HD datasets pre-
sented in Fig. 3e and f.

Real-world satellite and sky images rarely have detailed
ground-truth cloud motions at the level of a pixel or a block of pix-
els. Given the rarity of detailed ground-truth motion vectors, many
approaches rely on both manual procedure of visually checking
and compute-aided quantitative analysis and refinement (Escrig
et al., 2013; Leese et al., 1971). For example, Leese et al. (1971)
tried to determine cloud movements by combining the manual
procedure of viewing loop movies with cross-correlation matching
for manually identified targets. Inspired by this approach, we
design our two-step annotation procedure: manually identify
Fig. 8. Color map on ei
cloud pieces (cloud regions) in selected images (six cases in
Fig. 7), and then estimate translative motion vectors for each
region using a cross-correlation based block matching algorithm.
Because human eyes provide the best image segmentation to
identify different cloud regions, this manual method ensures the
optimal performance in the subsequent block matching and is less
sensitive to image noise. Therefore, we treat the motion tracking
results obtained from manual annotation as the ‘‘ground-truth”,
and use them to generate a ‘‘false” color image map (termed Man-
ual) and compare with the results of all motion estimation models,
including BM, MPIV, BA, LODF, and Hybrid (Fig. 8). Lastly, we
apply the resulting motion field to the first image frame so to pre-
ght selected cases.



Table 4
STDANG score of eight motion tracking models on simulated and real images. Row Deform shows the tracking results of the simulated image pair with deformation model using
A ¼ 5; S ¼ 32. Row BNL3 presents the results of the real images from BNL3 dataset.

BM MPIV CBM HS LK BA LDOF Hybrid

Deform 10.99 8.93 6.58 8.38 18.08 5.40 7.06 5.66
BNL3 39.35 21.02 11.42 15.17 28.48 15.83 17.58 9.30

Table 5
MAE score of models of eight selected cases.

Scatter Green Fast Multi Deform1 Deform2 Fig. 3e Fig. 3f

BM 19.6 23.5 39.4 33.9 54.9 54.5 13.1 19.6
MPIV 7.8 19.1 29.0 15.6 34.8 44.4 16.9 18.6
BA 3.7 11.4 18.2 6.4 20.3 25.1 12.4 10.7

Manual 3.0 8.0 15.0 4.0 18.0 22.0 8.8 7.3
Hybrid 3.3 8.2 15.4 4.6 18.5 22.5 9.3 8.8

Table 6
MAE score of motion tracking models on seven real images.

BNL1 BNL2 BNL3 TWP SGP HD-SI HD-TSI Overall

BM 20.4 18.0 24.1 34.6 39.0 18.8 15.7 24.4
MPIV 20.3 15.3 23.6 26.1 27.5 19.6 15.0 21.1
CBM 7.9 5.0 8.7 11.9 15.6 13.4 5.8 9.8
HS 13.5 7.8 11.1 17.8 16.3 18.8 10.9 13.7
LK 42.9 38.4 48.4 51.9 56.1 40.2 39.9 45.4
BA 9.8 6.6 10.9 11.6 11.5 12.5 7.6 10.1

LDOF 7.9 5.0 7.0 11.1 9.8 9.3 5.7 8.0
Hybrid 6.2 4.2 4.7 9.8 8.8 8.7 5.3 6.8

Table 7
Running time (in min) of 2-frame cloud motion tracking using four image datasets.

BM CBM MPIV LK HS BA LDOF Hybrid

BNL1 0.12 0.02 0.94 0.72 0.11 3.64 1.48 0.17
SGP 0.08 0.01 1.04 0.75 0.12 3.49 1.44 0.22
HD-SI 0.44 0.69 21.2 3.26 0.51 23.8 24.5 0.53
HD-TSI 0.33 0.11 12.1 2.72 0.40 17.8 8.04 0.58
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dict the subsequent frame and calculate the MAE score between
the predicted frame and the second frame (Table 5). We observed
that Hybrid attains the best approximation to the manually anno-
tated color map. More importantly, Hybrid is robust in all of the
eight representative cases and has the fewest MAE errors among
the five models.

To quantitatively analyze each model’s performance on real sky
images, we applied the aforementioned method to manually anno-
tate motion vectors in real images, treated them as ground-truth,
and measure tracking errors w.r.t. the ground-truth. Thereby, we
can compare the results with the same metrics between simulated
and real images. In detail, we generated a pair of synthetic images
using the deformation parameters of A ¼ 5; S ¼ 32, and chosen a
pair of real images from BNL3 which have the similar color, cloud
fraction, and motions to the synthetic image. Table 4 summarizes
the STDANG score of eight models for both synthetic and real TSI
datasets. Being consistent with its performance in simulation tests,
our Hybrid model again demonstrates its robustness by obtaining
the lowest error rate in TSI images among all models. Meanwhile,
we observed that real-image motion estimation is more challeng-
ing than one with synthetic images based on the results in Table 4.
We attributed this observation to two reasons: (1) real images con-
tain much more noise and texture variations between consecutive
frames than synthetic images, resulting in problematic motion vec-
tors, and (2) ‘‘ground-truth” in TSI dataset may be biased and devi-
ate from real cloud motions. Even the manual approach generates
the optimal image segmentation for enhancing the accuracy of
subsequent cross-correlation matching, it only considers transla-
tive motion, and consequently, fails to detect local deformations,
such as shape changes. In contrast to our simulation images in
which the ground-truth cloud movements are known as a prior,
real images do not have prior knowledge and must rely on manual
annotation that may not faithfully represent true motion at a pixel
level and introduce bias. Consequently, the bias contributes to the
estimation error by various tracking models.

Table 6 summarizes the MAE score of all the motion estimation
models over different real image datasets. It shows that the Hybrid
model outperforms the remaining classic models for the TSI and
HD imager datasets. Compared with the best-performing block
matching approach, CBM, and the most accurate OF method, LDOF,
our proposed hybrid approach further cuts down the overall error
rate by more than 30% and 15%, respectively.

5.7. Comparison of computation time

To evaluate the efficiency of motion tracking models for short-
term solar forecast, we compare the running time of different mod-
els using images from both TSI and HD image datasets. Table 7
summarizes the computation time of seven state-of-the-art mod-
els, along with our hybrid approach over two low-resolution and
two high-definition datasets: BNL1, SGP, HD-SI and HD-TSI. All
the models here are implemented in Matlab and tested on a 64-
bit Linux laptop with one 4-core CPU of 2.60 GHz and 8 GB
memory.
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In general, OF methods take more time than block matching for
computing the dense motion field. One exception is the HS model.
In our experiments, its implementation involves no multi-
resolution optimization scheme, and thereby is faster but with a
trade-off between tracking accuracy and latency. Different from
other block matching approaches, MPIV has additional costs due
to its recurring motion estimation and post-processing filters.
From the results of the low-resolution TSI images, i.e. BNL1 and
SGP, we observed that all OF approaches are capable of serving
forecasts between five and ten minutes ahead. However, high res-
olution images lead to the dramatic increase to the latency of OF
methods, which makes them impractical to support short-term
solar forecast.

In contrast, our Hybrid model has comparable performance to
standard block-based motion algorithms. For HD-SI images, it is
even faster than the cloud-based block matching (CBM) model.
Because the motion tracking process dominates the end-to-end
prediction pipeline (Peng, 2016), the processing speed of the
hybrid approach is sufficient for predictions between two and fif-
teen minutes ahead. With new image frame arriving every ten sec-
onds, a single motion tracking pipeline cannot keep up with the
arriving rate of cloud image streams. We can apply parallel pro-
cessing to resolve this problem and avoid dropping frames: in par-
ticular, deploying multiple pipelines (P 4) of the Hybrid model
into a multi-core server, and dispatching newly arrived frames in
a round-robin fashion to an idle pipeline that has its designated
CPU core, and generating a new batch of motion vectors every
ten seconds.
6. Conclusions

In this paper, we discuss our investigation of state-of-the-art
motion estimation methods for tracking and predicting motion of
clouds, and quantitatively analyze classic models of both block
matching and optical flow using various sky imagers and synthetic
images. By taking advantage of all prior models, we propose a new
hybrid model to employ cloud mask and quad-tree in block-wise
motion-tracking, to extract the dominant motion patterns via his-
togram statistics, and to estimate a dense motion field at pixel level
via customized motion filters and objective function.

To validate the effectiveness of our model for cloud motion esti-
mation, we not only collected various types of real images from
different sites, but also synthesized three image-sequences to sim-
ulate the shape-changing clouds and image corruption with ran-
dom noise. The results show that compared with classic models,
our new model can accurately capture cloud deformation and is
resilient to image noise. It consistently produces the best color
map and greatly reduces the angular error (AAE) by at least 30%
in all simulated image sequences. In terms of real images, the
new model consistently extracted clear motions of clouds under
various conditions (e.g. multiple layers and fast-moving clouds)
and lessened MAE by at least 10% for both TSI and HD image
datasets.
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